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A delivery of wood logs to a home in South Island, New Zealand.
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Abstract

In this study we review the current status of restal solid fuel (RSF) use in the UK and
compare it with New Zealand, which has had severgewtime air quality issues for many
years that is directly attributable to domestic ddirning in heating stoves. Results showed
that RSF contributed to more than 40 pg M, and 10 ug i BC in some suburban
locations of New Zealand in 2006, with significamt quality and climate impacts. Models
predict RSF consumption in New Zealand to decretigatly from 7 PJ to 6 PJ between
1990 and 2030, whereas consumption in the UK ise®dy a factor of 14. Emissions are
highest from heating stoves and fireplaces, and teculated contribution to radiative
forcing in the UK increases by 23% between 2010 20@D, with black carbon accounting
for more than three quarters of the total warmiffgce By 2030, the residential sector
accounts for 44% of total BC emissions in the Uld &ér exceeds emissions from the traffic
sector. Finally, a unique bottom-up emissions inegnwas produced for both countries
using the latest national survey and census datthéoyear 2013/14. Fuel- and technology-
specific emissions factors were compared betwedtipleuinventories including GAINS, the
IPCC, the EMEP/EEA and the NAEI. In the UK, it wimaind that wood consumption in
stoves was within 30% of the GAINS inventory, buinsumption in fireplaces was
substantially higher and fossil fuel consumptiomigre than twice the GAINS estimate. As a
result, emissions were generally a factor of 2¢ghér for biomass and 2-6 higher for coal. In
New Zealand, coal and lignite consumption in stasesithin 24% of the GAINS inventory
estimate, but wood consumption is more than 7 tithesGAINS estimate. As a result,
emissions were generally a factor of 1-2 higherdmal and several times higher for wood.
The results of this study indicate that emissionmfresidential heating stoves and fireplaces
may be underestimated in climate models. Emissimasncreasing rapidly in the UK which
may result in severe wintertime air quality redocsi, as seen in New Zealand, and contribute
to climate warming unless controls are implemestgth as the Ecodesign emissions limits.
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1. Introduction

Globally, 9.18 GtC@eq was emitted from the residential and commefaidtings sector in
2010; accounting for approximately 19% of globategrthouse gas emissions and 33% of
black carbon (BC) emissions (Lucon et al., 2014)significant proportion of emissions in
this sector are attributable to inefficient comiustin cookstoves, heating stoves and open
fires. Approximately 3 billion people worldwide, astly in developing nations, rely on
biomass and other solid fuels as their primary s®awf energy (Bonjour, 2013), which has
significant health impacts due to exposure to allupants (Butt et al., 2016, Lelieveld et al.,
2015). Within the OECD, energy used for heatingoaoted for 37% of final energy
consumption in 2009 (Beerepoot and Marmion, 2012 ia expected to grow by 79% over
the period 2010 — 2050 (Lucon et al., 2014). Despiis, the residential and commercial
buildings sector above all others was highlightedhaving the greatest potential for the most
cost-effective emissions reductions through eneffjgiency measures and renewable space
heating technologies (UNEP, 2009, IEA, 2013).

Biomass (mainly wood logs and pellets) has beentiifiled as a key option to decarbonise
the residential sector and consumption has beeadsing in recent years, largely owing to a
combination of bioenergy support initiatives, higlemergy prices, aesthetics, and climate
change consciousness (Eisentraut and Brown, 2@bfjsequently there has been an impact
on health due to deteriorated air quality in mamgaa, particularly in wintertime. For
example, an estimated 20,000 and 9,200 prematathsleccurred in Western Europe and
high-income North America in 2010 due to residdntiaating with wood and coal; an
increase of 23% and 18% respectively on 1990 estsn&hafe et al., 2015). Fuel switching
from oil and gas fuels to residential solid fudRSE) can also exacerbate air quality issues,
particularly at a local scale. Moshammer et al0O@Qestimated that if all homes in an Upper
Austria study region switched from oil to wood-firdeating systems, there would be an
increase in the annual average fMoncentration of 3-5 ug  leading to approximately
170 additional premature deaths per year.

Small scale combustion of solid fuels in heatingves and fireplaces is often uncontrolled
and unabated, leading to high emissions factorsgiseous and particulate pollutants.
Methane (CH) and non-methane volatile organic compounds (NM$PD&e byproducts of
too low combustion temperatures or lack of avadabkygen in the combustion chamber
(Van Loo and Koppejan, 2007). Emissions are gelyenalich higher for biomass fuels than
for coal, but also depend on combustion conditiwh&h are characterised by the modified
combustion efficiency (MCE). A high value of MCErages efficient flaming combustion
and low carbon monoxide (CO) to carbon dioxide f0@tios. A low value of MCE denotes
inefficient smouldering combustion, with high levedf CO and organic carbon (OC). The
latter which may contain tars, phenolics, acetid,aaldehydes and polycyclic aromatic
hydrocarbons (PAH). Low values of MCE are commorolter log wood stoves or where
there are poor operating procedures such as odantpar poor inlet air control. Nitrogen
oxides (NQ) and to a lesser extent nitrous oxide@)and ammonia (N§J are in the most
part formed via the conversion of fuel-bound nigngand proteinaceous compounds at the
low temperatures observed in stoves and firepl@dgliams et al., 2012). Hence they are
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proportional to the nitrogen content of the fueheTsame is true of sulphur dioxide ($O
emissions which are dependent on the levels othsujgcalcium, potassium and chlorine in
the fuel. The sulphur content of wood is typicallry low (<0.1 %), so coal-based sources
are more significant. Particulate matter below d®ip diameter (P\) and below 2.5 pm in
diameter (PMs) are among the most useful indicators of the hemtpacts of RSF use
(Naeher et al., 2007, Straif et al., 2013). Manyds&s have shown that PM from RSF
combustion is predominately in the fine and ultraffraction, which penetrate deep into the
lungs and can cause cardiopulmonary disorders amtec (Allan et al., 2010). The
constituents of Pl include black carbon (BC), organic carbon (OC) asth. BC is
characterised by strong absorbance of visible ligtgolubility in water and a microscopic
appearance of aggregated carbon spherules. Ra&dfatising (the net change in irradiance
causing either cooling or warming) via BC ariseshbdirectly, via light absorption, and
indirectly via darkening of ice and snow. Theralso a cooling effect via cloud interaction,
but this is uncertain and direct absorption of atidn in the atmosphere is the largest term
(Bond et al., 2013, Boucher et al., 2013, Seinégld Pandis, 2006). Organic carbon aerosol
can be primary (POA) or secondary (SOA) formedha atmosphere by VOC oxidation
products. Recent research has shown that the lootm of residential wood burning to
organic aerosol loadings may be up to a factor bigBer when SOA is included (Bruns et
al., 2015). The organic fraction is often adsortethe surface of BC or ash particles and is
among the most harmful to health, having irritacsycinogenic, mutagenic, teratogenic
qualities (Naeher et al., 2007, Jones et al., 2A@A has a net negative radiative forcing in
the atmosphere and in clouds, with a slight posigffect on ice and snow. There is also a
slight positive radiative forcing from the smallaétion of OA that absorbs radiation,
especially in the UV range, which is termed ‘browarbon’ (Saleh et al., 2014).
Interestingly, the negative radiative forcing o$$d fuel POA is almost twice that of biomass
(Bond et al., 2013), which may be linked to thehieigdegree of oxygenation of biomass soot
(Jones et al., 2005). Finally, inorganics are presethe ash fraction of PM, mainly as alkali
salts (KCI, kSO, and KPQ,) with smaller amounts of trace elements and heaeyals
including Zn, Pb, Cd and aluminosilicates (Molndrat, 2005). Small scale unabated
burning of waste wood and treated timber may alstease arsenic. Elevated As
concentrations have been attributed to this sourdéew Zealand (Ancelet et al., 2015) and
the USA (Peters et al., 1984)

Residential wood burning is often assumed to blearaneutral and one of the cheapest ways
to reduce greenhouse gas emissions. In this stwdpassume that wood burning is indeed
CO, neutral, and investigate the emissions and clinmpacts of other pollutants, given that
assumption. A comparison is made between the Urmdiaddom, where residential wood
burning is being promoted and growing rapidly; axelw Zealand, where wood burning
stoves have been widely used for many years andaarging severe wintertime pollution in
some areas.
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2. Review of residential solid fuel (RSF) use in thUK and New Zealand
2.1 RSF in the UK

The UK has legally binding targets to ensure 15%rwrgy comes from renewable sources
by 2020, and to reduce greenhouse gas emissioB88%yby 2050, relative to 1990 levels.

For the residential and heating sectors, the ReplewBnergy Strategy 2009 set a target of
12% of heat to come from renewables by 2020 (cpording to approximately 260 PJ).

Fuel switching to electricity and biomass was idat as a key pathway to achieve this
(DECC, 2012a), but residential biomass use wadrtotbave the potential for significant air

quality impacts (DECC, 2012b). The UK’'s greenhogses emissions have reduced by
approximately 30% since 1990, but residential seetoissions have reduced by just 20%
(DECC, 2015a). Hence the residential sector shametal GHG emissions has increased
from 21% to 24%.

Official figures show that in total, RSF consumptim the UK has reduced by 87% since
1970. This reduction has been driven by a move afmay coal-fired boilers to more
efficient and less polluting gas & electric heatoentral heating systems, as shown in Figure
la and Figure 1b.
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Figure 1. Breakdown of officially reported RSF conamption in the residential sectors of the UK
(a) and New Zealand (c). Consumption of all fuelsxcluding gas and liquid is shown in (b) for
the UK and (d) for New Zealand. Data sources: NAEIDUKES (DECC, 2015a), EUROSTAT
(2016), MBIE (2015).

Fuel switching from coal to gas has been drivenncyeased availability of North Sea gas
and associated national grid infrastructure, ad aglnational policy aimed at reducing the
number of smog events such as those seen in th@s19960s and 1970s. Air quality

legislation such as The Clean Air Act of 1956 (sexd 1993) has dramatically reduced the
demand for coal since its inception, by prohibitihg emission of visible smoke.

In the year 2014, natural gas accounted for 83.6%btal residential energy consumption.
Although solid biomass contributed just 5.1% o&taiK non-electric energy consumption, it
dominated the RSF category and represents thestaigigewable energy source in the sector.
Biomass use has increased more quickly in the Etd2Riential sector, having increased
from 929 PJ in 1990 to 1606 PJ in 2014, an incredsé8% (EUROSTAT, 2016). Other
technologies such as solar thermal, biogas ané& grmound source heat pumps are gaining
popularity, thanks in part to government incentsebemes such as the domestic renewable
heat incentive (RHI), but biomass heating systerastlae largest contributor to renewable
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heat production. Biomass produced 55% of renewladde paid for under the domestic RHI

between April 2014 and February 2016 (DECC, 2016th}the total number of accreditations

for biomass systems, 58% replaced oil / kerosaed fieating systems which are among the
most expensive to run. It should be noted, howdhat,log heating stoves are not eligible for
and hence not included in the RHI statistics. Palleves and boilers are eligible, but must
meet emissions, sustainability and metering catesind the home must provide an Energy
Performance Certificate (EPC) or a Green Deal AelfReport.

Woodfuel for household heat is one of the majoveis of bioenergy uptake in the UK, and
is strongly correlated to gas and oil prices (Adansal., 2011). However due to relatively
high capital costs and a need to develop supplynshblK policies supporting biomass have,
until recently, mostly targeted medium and largees@pplications. Sites with relatively high
heat demands that are not connected to the natyasajrid were found to be the most likely
to implement biomass for heat within the resideftiienmercial sector. This includes
agricultural buildings, hotels and schools/highéu@tion institutions (Carbon Trust, 2012).
Such schemes are generally 100-1000 kW biomassrbaiking pellets or wood chip which
can be delivered in bulk. Larger systems also comyntave combustion optimisation
features such as lambda sensors for oxygen feedbaobndary/tertiary air injection and flue
gas abatement technologies. In the most part, fgeatoves and fireplaces do not feature
such control technologies which leads to more iaieffit combustion and higher emissions of
pollutants per unit fuel input.

Very little data is available on heating stoves &odsehold RSF consumption in the UK,
primarily due to difficulties in monitoring and relgting such small scale emissions sources.
In an attempt to better understand the consumpfievood in UK homes, the Department for
Energy and Climate Change (DECC) conducted a nattnsurvey in 2015 (DECC, 2016a).
In summary, the survey found that 7.5% of respotedesed wood fuel, and over 90% of
those used logs in heating stoves and fireplaedser than pellets, chips or briquettes. A
similar trend was found across Europe, where 90%%tlential biomass used is in the form
of hardwood logs (Wohler et al., 2016). The DEC@rssy also found that previous estimates
of domestic wood consumption were a factor of 3dowhan the 68 PJ total for 2013. It
should be noted that the data shown in figure hatanclude these revisions. According to
data from the Stove Industry Alliance (SIA), sabéfieating stoves were 200,000 in 2014, up
21% on 2005 levels (SIA, 2016). Approximately tvinirds of these were multi-fuel stoves,
although research showed that 77% were used tovibawd only. Sales growth was strongest
for low emission DEFRA exempt appliances, which approved for use in smoke control
areas (see section 2.3). In the future, salegxgected to grow for stoves which meet the
European Ecodesign emissions limits, which emitou@0% less particulate matter than older
stoves.

It has been known for many years that RSF comhbustantributes to UK air pollution,
particularly in rural communities (Lohmann et &000, Lee et al., 2005). Yet there are very
few studies on biomass burning source apportionngentpared with other countries in
Europe and North America, for example. Severalistutlave recently found that domestic
wood burning is an increasingly important sourceaifticulate matter. Fuller et al. (2014)
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estimated the contribution of wood burning to anriR,o in London to be 1.1g m™ and
Crilley et al. (2015) estimated the contributionbiack carbon to be 15-30%. Young et al.
(2015) found the contribution to organic aerosob&up to 38% during the winter. These
emissions rival those of the traffic sector, cagsilangerous air pollution and counteracting
traffic emissions reduction policies in London (Rwon, 2015).

2.2 RSF in New Zealand

New Zealand is traditionally viewed as a good exempf a low carbon economy,
particularly regarding electricity and heat supphhe contribution of renewables to total
primary energy supply (TPES) in New Zealand wa8%8in 2012, the third highest in the
OECD. In contrast, the contribution in the UK wa®&%; the fifth lowest in the OECD
(OECD, 2014). Of the renewable contribution to TPB8% came from geothermal and
hydro power in 2014. Nationwide, woody biomass $edps8.3 PJ, up 52% since 1990 and
of this, 13% (7.34 PJ) was consumed in the resialesgctor.

In contrast to the UK, RSF consumption in New Zedlaas been relatively constant since
1990, and the fuel mix is dominated by wood, aswshan Figure 1c and Figure 1d. In
comparison to the UK, there is a greater reliante PG (16.6%) and low grade coal/lignite,
as well as wood (42.6%). There is also comparatikel uptake of kerosene/heating oil and
patent fuels (manufactured solid fuels, includingpkeless fuel and coke). Coal consumption
is constrained largely to the west and south ofcthntry where it is mined. The RSF mix
has remained largely unchanged for many years,hawars in Figure 1c, although total
consumption has been reducing gradually at an geeete of 85 TJ yeabetween 1995 and
2014. New Zealand's Bioenergy Strategy 2010 (BARE@10) set out targets for 25% of
consumer energy to come from bioenergy by 2040réatly 8.5%), as well as a 60%
increase in the country’s use of biomass for héhis includes substitution of coal or gas
heating.

Both UK and New Zealand homes are often highly gyarefficient in comparison to other
OECD countries, due to relatively poor insulatioml deating patterns (Howden-Chapman et
al., 2009). In New Zealand there is a traditiorhefting just one room of the house using
unflued gas and electric heaters, as well as apendnd heating stoves burning RSF. Homes
using solid fuel heating stoves were found to benvest on average than homes using other
heating methods (French et al., 2007). Wood heasiradso one of the cheapest options for
homeowners due to the plentiful supply. New Zealhad a large domestic source of wood
fuel, mainly as Radiata pine from the forestry isitin The bioenergy strategy, together with
the New Zealand Home Heating Association (NZHHAY. Rarm Forestry Association
(NZFFA) and the Energy Efficiency and Conservatimthority (EECA), are pushing to
increase the supply of wood fuels for export. Assuence of this surplus is lower prices
for home owners. However, fuel poverty and exceisgew mortality are similar in both the
UK and NZ at 10-14% and 18-19% respectively (HowGé&mapman et al., 2009). Energy
used for space heating accounts for the largese stfaresidential energy consumption in
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both countries. The share is 34% in New Zealarah(s et al., 2010), but is much higher in
the UK at 62% (Palmer and Cooper, 2014). Althougfaltconsumption of biomass in the
residential sector is higher in the UK, proportibydt is much higher in NZ, as shown in

Table 1.

NZ UK Unit Ref

Solid 7.34 54.67 | PJ (EUROST

biomass AT, 2016);

consumption (MBIE,

in residential 2015)

sector

Number of | 1.781 | 27.914 (DCLG,

dwellings 2016);

(million) (Statistics
NZ, 2016)

Population | 4.509 | 64.596 ONS,

(million) (Statistics
NZ, 2015)

Average 4.12 1.96 GJ

biomass house

consumption hold~

per dwelling !

Average 1.63 0.85 GJ

biomass perso

consumption n?t

per person

Table 1. Comparison of residential biomass consumian in the UK and NZ, 2014,

As shown in the table, average residential bionsassumption per dwelling is over twice as
high in New Zealand as the UK. However, accurafrting of RSF consumption in both
countries is confounded by huge uncertainties aadation in the data, especially in
comparison to metered fuels such as gas, elegtiacitt LPG (Isaacs et al., 2010). Daily
wintertime wood consumption estimates vary from ®¥ day" in Christchurch to 486 MJ
day’ in Nelson, Rotorua and Taumarunui (Wilton, 20¥®).average value of 360 MJ day
was used by Kuschel et al. (2012). The calculateddafuel use in the DECC survey is 154
MJ day" for an open fire and 128 MJ dajor a heating stove; significantly lower than the
New Zealand estimates. Analysis of data from tHe fihds that the average household wood
consumption in homes that use wood as their prinsatyce of heating is 238 MJ day
versus 76 MJ dayin homes where wood is only used for secondaryitg8USEIA, 2014).
Despite the uncertainty, the officially reportednsomption of woody biomass in the NZ
residential sector reduced by approximately 9% fd880 to 2014, as shown in Figure 1c.
This is arguably a result of efficiency improvenseaind new emissions limits for heating
stoves.

2.3. Emissions Limits and Standard Test Methods
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Three key standards exist for the testing of hgastoves in Europe, NS 3058/ NS 3059 in
Norway, DIN-plus in Germany and BS PD 6434 in th€. Uhere are significant differences
in the test procedures used in these standardeglsal et al., 2013), as shown HEnror!
Reference source not found.In addition, RHI emissions limits apply to eligbboilers in
the UK, which include an efficiency of 75%, CO centrations of less than 1% (ref 13%
0,), and emissions factors of 30 g &idr PM and 150 g GIfor NO, (approx. 0.54 g k§
and 2.7 g kg respectively). The European standard EN 13240 edsmires appliance
efficiency to be greater than 50% and CO emisstonbe less than 1.0% (ref. 13%)O

However, emissions of PM, NGand OGC are left to national legislation.

Recgenthe

Ecodesign of Energy-related Products Directive @20P5/EC) regulation 2015/1185 was
published which has the specific aim of reducingssions of PM, OGCs and CO from this
source by 27 kt yedr 5 kt year and 399 kt year respectively by 2030. This will be done
via the implementation of emissions limits for opand closed-fronted heaters from the year
2022, as shown i&rror! Reference source not found.

Country Europe Europe Germany | Norway UK USA Australia /
/Austria New
Zealand
Standard | Ecodesign EN 13240 DIN-plus | NS 3058 BS PD 6434 NSPS / ASINZS
regulation / BS 3841 ASTM 4012, 4013
2015/1185 E2515, and 4014
E2780-10/
EPA Method
28WHH
Location Chimney Chimney Dilution ESP/Dilution | Dilution Dilution
tunnel tunnel tunnel tunnel
Draught Forced 12 PA| Forced 12 Natural <1.25 Pa <1.25 Pa <1 Pa
PA (natural) (natural) (natural)
Sampling 70°C 70°C 35°C 70°C <32°C 15-32°C
temp
Fuel Range of Range of As Dimensioned| Coal, lignite, | “Crib wood” | Dimensioned
Biomass / Biomass / specified | spruce (49 x | patent fuels, | dimensioned | (100 x 50
fossil fuels. | fossil fuels. in EN 49 mm), 16- | peat and (38 x89 mm) Radiata
Wood logs | Wood logs 13240 20% MC wood mm) pine, 16-
must be must be Douglas Fir, | 20% MC in
beech, birch | beech, birch 15-25% MC. | New
or hornbeam| or hornbeam Cordwood Zealand.
alternative Hardwood in
available Aus
Weight of | Dependent | As per As 112+ 11 kg | 15kg 112 + 11 kg
test fuel on choice of | manufacturer's specified | m? firebox m2 firebox
PM instruction in EN volume volume
measuremen 13240
method
Test Dependent | 3 categories: | As 4 burnrate | 2burnrate | 3 Method 28 | 3 burn rates:
condition | on choice of | Nominal, slow| specified | categories categories: | burn rate high,
PM and safety in EN nominal and | categories medium and
measurement tests 13240 low (plus low
method intermediates|
if necessary),
repeated 5
times
» | Test Dependent | Min. 30 Time Load time
% duration on choice of | refuelling minutes between first| 1060 s it
£ PM interval 1.5 re-fuel and a | firebox
s measurement hours for trough in volume
g method wood at radiation
2 nominal heat output
F | Include Dependent No No No — 1 hou No — No — No

10
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332

ignition/ on choice of pre-test provided no | kindling,
start-up? | PM “undue newspaper
measuremen trouble to the| and pre-burn
method user” fuel
Units mg ni° at mg Nm?® at mg Nm® | gkg* g hout! g hout! g kg*
13% O 13% O at 13% Q
PM 241/5.0 75 10 5 4.5 reducing1.5
to 2.0
CO 1500 <1% 1500 Optional?
o | OGC/ 120 120
€ | THC (as
o | C)
S | NOx (as | 200/300 200
2 | NO2)
E | Efficiency | 65% 50% 75% 63% (non- | 65%
W catalytic)

Table 2. Comparison of standard test conditions forheating stoves in different
countries. Expanded from Seljeskog et al. (2013)

As the table shows, there are significant diffeesnin the requirements of standard test
methods around the world. Historically, regulati@as emphasised total (non-size segregated)
particulate matter emissions, although in recearsy€O and thermal efficiency have been
added, followed by NQand organic gaseous carbon (OGC). There are signifdifferences

in the test procedures used in these standardshvadoimplicates comparative studies. Key
differences include the draught, fuel, reportingtsyndilution, filter temperatures, and
sampling durations & equipment. One of the highmgtact variables is the use of a dilution
tunnel, whereby a greater proportion of the condeles organic fraction is captured
compared to hot-sampling. This alone can increade emissions factors by orders of
magnitude (Seljeskog et al., 2013, Coulson et2l15). In addition, emissions factors may
be increased further if atmospheric ageing of edigmoke is taken into account (Bruns et
al., 2015, Bruns et al., 2016), though it may bguead that OGC measurement may be used
as a proxy for SOA formation.

New Zealand’s National Environmental Standards (Nte&ture five standards for ambient
air quality. The NES standards for CO, N&hd PM, are 10,000 pg M (8 hour mean), 200
g m* (1 hour mean) and 50 ugh24 hour mean) respectively. Most breaches of this
standard are attributed to domestic heating witledyavith 24 hour PN} concentrations of
more than 200 pg thhaving been recorded in some towns (Coulson eR@l3). Hence
New Zealand has introduced a design standard fodwearners installed in urban areas. The
NES standard for wood burners centres onfhissions and an emissions limit of 1.5 g kg
! dry fuel burned is required when tested to AS/N®L3t An efficiency of 65% is also
required when tested to AS/NZ 4012 using fuelsifosut under AS/NZ 4014. AS/NZS
4013:2014 is a revised version of AS/NZS 4013:199%] initial tests showed that the
revised method is more representative of real-woddditions and gave emissions factors
2.5 times larger than the previous method (Todd@renwood, 2006).

A comprehensive review of particulate emissions @®uSF burning in New Zealand was
carried out by Wilton (2012), who noted that reald emissions of NES compliant
appliances were typically twice as high as thogerdened under laboratory conditions as
described above. Real-world emissions have beemdféo be substantially higher in New
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Zealand (Ancelet et al., 2010, Xie et al., 2018)well as in Europe (Wdhler et al., 2016) and
the USA (USEPA, 2016); primarily due to user opegtconditions such as start-up, fuel
properties, overloading and fluctuating burn ratsstatistical analysis of P emissions
factors from in-situ wood stove tests in New Zedlamas carried out by Coulson et al.
(2015). The study found that geometric mean emmsfaators for older and low-emission
stoves were 9.8 + 2.4 g kgand 3.9 + 3.8 g k{ (dry wood) respectively. The distribution
was found to be log-normal and hence the use ofmgéa, rather than arithmetic, mean
emission factors are recommended.

A new standard for PM emissions from wood stoves imroduced in the city of Nelson in
2006, requiring 1g K§ rather than the NES standard of 1.5 g'kés a result of this
implementation, P and BC were found to be decreasing at an avertgeof 0.5 pg
and per year and 100 ng°nper year respectively (Ancelet et al., 2015). Stoaplacement
programs have been found to achieve similar bendfitother countries. For example,
Noonan et al. (2011) noted a 70% reduction in imdBd, s concentrations in a rural
community in the USA, due to replacing old and ficegnt wood stoves. Rule 4901 was
passed in the San Joaquin Valley, California, i8ZL9vhich limited emissions from RSF
burning during periods of poor air quality, and uggqd new wood burners to meet
EPA/NSPS certified. As a result, BMconcentrations reduced in the area by 11-15% (Yap
and Garcia, 2015). In Europe, it is estimated teatacing current RSF technologies with
more efficient wood pellet stoves could reduce eotr@tions of OC and EC by more than
50% in large parts of the continent (Fountoukialet2014).

Due to regular breaches of NES air quality starsldng RSF burning, a number of health
impact studies have been carried out in New ZealRedhaps the most comprehensive was
the Health and Air Pollution in New Zealand (HAPIN&udy (Kuschel et al., 2012). It found
that RSF burning was attributable to 56% of premeatleaths due to anthropogenic ghh
2006, making it the leading cause. This equat&bfpremature deaths, 334 admissions due
to cardiac and respiratory illness, and 817,600ic¢sd activity days. The estimated cost due
to these impacts was NZD $2.385 billion. In additid was noted that basing the report on
PM;io rather than Pl led to an underestimate of the attribution of treampacts to
transport and RSF emissions because these souate@sargreater contribution to fine PM.
For example, studies have shown that over 90% efntass of emissions from wood
combustion are below PM (Bond et al., 2004, Nussbaumer, 2003, McDonalal.et2000,
Young et al., 2015).

3. Methods

The New Zealand national census is a useful mefaecallecting data on qualitative RSF use.
Question 16 requires the resident toal'k as many spaces as you need to show which of the
following are ever used to heat this dwelling.” The UK census is more focussed on the type
of central heating used at a property (gas, eteai, solid fuel, other, or no central heating).
Information on fuels used for supplementary heatimdimited to sub-national housing
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surveys and studies into fuel poverty in off-grmhies by organisations such as the Office of
Fair Trading (OFT, 2011), the Office of Gas andckHleity Markets (OFGEM) and the
Department of Energy and Climate Change (DECC)nfEaland Cooper, 2014). The New
Zealand census also has the advantage of beinghetd 5 years, whereas the UK census is
held every 10 years. Additionally, data is avaiat three different resolutions: census area
unit (CAU); ward; and territorial authority. CAU peesents the finest resolution, with some
urban grid cells less than 1 krim area. A number of models and inventories oéfetivity
data, emissions data and emissions factors forrék@lential sectors of both countries.
Studies have shown that several models in Europgerestimate pollutants such as
wintertime OC when compared with observations, Wwhg most likely due to residential
wood burning (Aas et al., 2012). The use of revisadssions factors for RSF combustion
was found to increase total Bl¥emissions in Europe by 20% (Denier van der Goal.et
2015)

3.1. A Top-Down Estimate of BC Concentrations in N& Zealand

A top-down approach was used to estimate black ocartoncentrations due to RSF
combustion in New Zealand. Emissions of 8Mnd corresponding monthly atmospheric
concentrations in 2006 were taken from the HAPIN4dg (Kuschel et al., 2012). BC
concentrations were calculated by multiplying 8oncentrations by the ratio of BC/RM

To define this ratio for New Zealand both spatiadiyd temporally, 31 separate datasets
containing simultaneous measurements of;P&d BC were analysed from 10 locations
across New Zealand. The wintertime BC concentratigere then calculated for each census
area unit (CAU) in New Zealand and were mappedguaitGIS.

3.2. Emissions and Climate Impacts Using the GAIN$lodel

In order to assess the impacts of RSF emissionsg MBAINS model
(http://gains.iiasa.ac.at/models/) was used to ideowetailed activity and emissions data
broken down by fuel and technology type, in both tHK and New Zealand. The version of
the model used was ECLIPSE version 5 for UNFCCCeXrh nations. Several scenarios are
available but here we use the current legislat©bH) scenario (Stohl et al., 2015), which
assumes efficient enforcement of committed legmtatwith some deviations. For the
residential sector, it is not known whether thisrario includes legislation such as Ecodesign
in Europe.

The residential sector in GAINS is broken down ifdor key technologies: commercial
boilers (<50 MW), single house boilers (<50 kW)atieg stoves and fireplaces. There are
minor contributions from open pits and cooksto\msg, these are small in comparison to the
other technologies and are not considered in tlidkwEach technology is then also broken
down by fuel type. For the UK, fuels include hardak (grade 1), derived coal (coke,
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briquettes etc.), agricultural residues and fueldlvdeor New Zealand, the split is between
hard coal (grade 1), brown coal/lignite (gradeah)] fuel wood.

Emissions data is available for 12 pollutants inll83: carbon dioxide, methane, oxides of
nitrogen, carbon monoxide, non-methane volatileanig compounds, sulphur dioxide,
ammonia, nitrous oxide, Py PM, 5, black carbon and organic carbon. For some paitsia
the full breakdown by fuel and technology was ndailable. These included GONQ, CO,
SO, NHz and NO. For these species, the breakdown was calculagechultiplying the
GAINS activity data by the GAINS emissions factde each fuel for the general
residential/domestic sector (fuel specific but tethnology specific). These are given in
Table 3. The net COemissions factor is assumed to be zero for biomas®rder to
investigate the climatic effects of non-g€pecies. In the case of CO, emissions factors were
not available in this version of GAINS. Therefommissions factors were taken from the
EMEP/EEA database (EEA, 2013) in this case, againguGAINS activity data. Full BC
and OC emissions were available for the UK (in G&INurope) but not for New Zealand.
The New Zealand emissions were calculated fromgrvhissions data, using the ratio of the
GAINS BC and PMp emissions factors for the UK.

The climate impacts were calculated by multiplyihg emissions for each RSF source by the
Absolute Global Warming Potential (AGWP) for eaatilygtant. The units of AGWP are
radiative forcing per unit emission over one yead are taken from (Bond et al., 2013). The
values for CQand NO were taken from the IPCC ARS report (Myhre et2013).

Net Emissions factors (t P)
Forcings
(MW m?) | Brown Coal Hard coal, Derived coal
Parameter | (Ggyr)* Mlignite grade 1 (coke etc)  Biomass

(6{0} 0.0917 99,500 94,300 100,000 0
CH, 2.2
NOy -6.2 70 118 110 68
CcO 0.48 5000 5000 5000 4000
NMVOC 0.78
SO, -9.0 1239 616 541 4
NHs 0 8 8 0.5 8.2
N,O 24.3 1.4 1.4 14 4
BC 74.3
OC (fossil fuel) -16.9
OC (biomass) -12.5

Table 3. GAINS emissions factors for the general sidential sector used to calculate technology-
specific emissions where the data was unavailable.

Table 3 shows the net radiative forcings for eamtupant, which includes direct and indirect
effects on a global scale. Cloud effects for spesiech as BC and particulate organic carbon
are included in these net factors. See Bond €2@ll3) for the full breakdown. The values
used here are also central estimates. For BC,ghtower and net upper estimates are 83%
lower and 144% higher than the central estimatee@s/ely. For biomass OC, the errors are
-65% to +84%.
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3.3. A Bottom-Up Emissions Inventory Calculation ad Comparison

Finally, a bottom-up emissions inventory was praldor both countries using unique
activity data and emissions factors. This allowel comparison of activity data, emissions,
and climate impacts between this study and the GAlNodel, alongside several other
international climate models. An extensive revieflvRSF sector emissions factors was
carried out. The most comprehensive and fuel/tddgyospecific factors were found to be
those of the EMEP/EEA database and these weretesgléar the modelling work (EEA,
2013).

Activity data in New Zealand was derived followilge method of the HAPINZ study
(Kuschel et al., 2012). The method uses 2006 cedatzasfor the number of homes in each
census area unit, multiplied by average daily wintee consumption factors for wood and
coal, multiplied by average PlYlemissions factors for each species. These emssaienthen
constrained to inventories which have been proddoedegional councils. Finally, these
peak wintertime values are assigned an annualldititn in order to account for the high
seasonal variability of RSF use. In this work, tlpgated 2013 census data (StatisticsSNZ,
2015) has been used, with the same wintertime copson factors of 20 kg ddyfor wood
and 16 kg day for coal. The annual distribution is presentedFigure 2. The distinction
between different grades of coal is not possibl wiis method, because the census does not
differentiate bituminous coal from lignite or ardbite; which are known to have
substantially different emissions factors (LeelgtZz®05, Mitchell et al., 2016).

——Wood Daily ——Coal Daily
----- Wood Annual -----Coal_Annual

25 4

—_ —_ o
[e) W (=]

Consumption (kg day')

W

Month

Figure 2. Model factors for average daily and annulehousehold consumption of wood and coal,
in households using each fuel.

Activity data in the UK was derived from the rec&ECC Wood Consumption Survey for
wood (DECC, 2016a) and the DECC Sub-National Redidfwel Consumption Statistics
(DECC, 2015b) for coal and derived coal / manufiedtusolid fuel (MSF). The former also
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467 has data on the number of homes using coal, bubthes is on wood users who use coal as
468 well as wood.
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476 4. RESULTS

477 4.1. Top-down Calculation of 2006 BC Concentrations New Zealand

478 Analysis of datasets featuring simultaneous,fP&d BC measurements was conducted in
479 several wood burning communities across New Zeaianatder to determine the ratio of
480 BC/PMy. The results are given in Table 4.

Concentration| Ratio
(ug m°) (%)
Town Class| Region SeasanPM; BC BC/PMg Data Source

S ChC w 660.0 9.4 1.9 NIWA,
Rangiora, Waikuku, S w 4.3 1.3 41.9 unpublished
Kaiapoi and Woodend S w 863.5 1.4 0.3

S W 306.5 1.2 0.8
Dunedin ] Dnd A 112.7 32.3 30.6
Dunedin ] A 99.6 25.4 29.6
Dunedin ] A 192.6 68.5 43.8
Dunedin ] A 2427 55.6 29.6
Dunedin ] A 56.2 18.9 37.7
Green Island S w 84.3 12.8 21.0
Dunedin ] w 329 2.9 11.0
Dunedin U W 20.2 3.3 17.6
Takapuna S Auk S 14.3 1.9 13.6
Takapuna S w 18.1 4.0 22.2| GNS
Queen Street U S 17.2 3.8 22.1 Science, unpub"shed
Queen Street U W 18.5 5.3 28.6
Khyber Pass U S 17.0 4.0 239
Khyber Pass U w 19.7 6.0 30.8
Penrose S S 15.9 1.8 11.1
Penrose S W 18.3 3.3 18.4
Henderson S S 11.8 1.2 104
Henderson S W 16.5 3.4 20.5
Alexandra R COt W 19 4.9 25.7 (Ancelet et al120
Alexandra R W 33 6.6 19.9
Alexandra R w 17 4.4 25.8
Alexandra R W 29 5.5 19.1
Masterton R Wrp W 25 3.1 12.6 (Ancelet et al., 2012
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Masterton R W 32 3.7 11.6
Nelson U NIn wW 12.7 (Grange et al., 2013)
Nelson U NIn W 21 29 12.7 | (Ancelet et al., 2015)
Auckland, Masterton, (Trompetter et al.,
Nelson, Alexandra ) Mixed W 14.1 | 2013)

U NZ w 24.6

S NZ w 16.7

R NZ w 19.1

Chc: Christchurch; DnD: Dunedin; Auk: Auckland; C@entral Otago; Wrp: Wairarapa,
NIn: Nelson

Table 4. Ratio of BC/PMy in urban (U), suburban (S) and rural (R) locationsin the winter (W)
and the summer (S) in New Zealand.

In addition to Table 4, a study from a suburbanriomear Wellington found that the
contribution of wood burning to ambient RMand BC averaged over a two year period was
2.9 pg nT and 846 ng m respectively (Davy et al., 2012). Hence the rafi@C/PM, s was
28.8%, which is similar to the BC/PMratio observed in other locations. Applying these
factors to the HAPINZ data yields the wintertimencentrations of BC in New Zealand, and
the results are given in Figure 3.

Winter BC concentrations due to RSF

e
“‘"s ol 2 combustion (pg m?)
S <1.0
' . e 1.0-15
-t . 15-3.0
5 LY T, S Bl 50-11.0
4
Auckland, Hamilton, Tauranga and Rotorua - Sy
‘l b4
st ] % iR
& $ ”
'y & i ; Nelson, Blenheim, Wellington, Masterton
I |
; : . |
Invercargill, Gore and Dunedin -
-3 .
>

Christchurch and Ashburton

Figure 3. Wintertime concentrations of black carbondue to residential solid fuel burning in
New Zealand in 2006.

The results show that the majority of the countag kiery low wintertime BC concentrations,
typically below 1000 ng m and below 500 ng thin many rural areas. The highest
concentrations were in the city of Nelson, spealfic Toi Toi, Wahsington and Bronte
districts which had mean winter BC concentratiomsrd.0 pg rit. Also in the highest 10%
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were Richmond, Arrowtown, Alexandra, Milton, Northeach Christchurch, Kaiapoi

Christchurch. Many of these regions are known teeh@oor wintertime air quality as shown
in Table 4.

4.2. Emissions and Climate Impacts Using the GAINSlodel

Activity data for RSF combustion in the residensiattor from the GAINS database is
presented in Figure 4.

B Commercial Boilers (<50 MW)  ® Single house boilers (<50 kW) Fireplaces ~ ®Heating stoves

o0
(=)
]

8
() (b)
= 60 £ 6
E B
§ 10 ‘g 14
g Z
O 5]
20 S 2
0 0 T T T T T T T T 1
1990 1995 2000 2005 2010 2015 2020 2025 2030 1990 1995 2000 2005 2010 2015 2020 2025 2030
mCoal mDerived coal & coke ®Brown coal/lignite © Agricultural residues ™ Fuelwood = Fuelwood (fireplaces)
100 10
. © £ (d
& =
g
£ 60 Z 6
£ :
5 40 Z 4
g O
© 20 2
0 0
1990 1995 2000 2005 2010 2015 2020 2025 2030 1990 1995 2000 2005 2010 2015 2020 2025 2030

Figure 4. Breakdown of activity data for RSF combuson by technology and fuel type according
to the GAINS database, 1990 - 2030. Top: wood fusbnsumption by technology type in (a) the
UK and (b) New Zealand. Bottom: breakdown of fuel onsumption in heating stoves and
fireplaces in (c) the UK and (d) New Zealand.

In the UK, the model shows that consumption of waothe residential sector is increasing
rapidly and will continue to do so to 2025. Heatstgves account for the largest proportion
of wood use (47% in 2015), and this is largely tua switch from coal and derived coal to
biomass, as shown in Figure 4c. The model forecamstsconsumption in stoves to continue
to reduce to 2030, yet wood consumption in stovesfaeplaces is estimated to increase by
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almost a factor of 4 between 2005 and 2030. Ilukhbe noted that GAINS only includes
wood consumption in fireplaces and hence does caduent for fossil fuel consumption in
this technology. A small amount of agriculturalidegs is consumed in stoves between 1990
and 200, but is negligible compared to other fuklsNew Zealand, the model shows that
consumption of wood remained comparatively consthatween 1990 and 2010 at
approximately 6 PJ. Wood consumption is dominatetdating stoves, with commercial and
single house boilers consuming negligible amoumtsughout the timeframe. Between 2010
and 2015 there is a 41% reduction in wood conswmgnd a six-fold increase in hard coal
(grade 1) consumption, suggesting a large fuelcéwig programme in stoves in New
Zealand. Lignite consumption remains relatively Ign0.5 PJ) throughout the period.

Fuel- and technology-specific emissions data islavia in the GAINS database for certain
pollutants in the RSF sector, but not all. Thesmg values have been calculated using
GAINS emissions factors and the activity data giiwrefigure 4c and Figure 4d, as detailed
in section 3.2. The results for heating stoves famglaces are given in Figure 5 for the
United Kingdom and Figure 6 for New Zealand. The t#sults show that emissions are
highly dependent on the type of fuel used and thiwity data for each. Emissions generally
follow the same trend as the activity data in Fegdc, whereby the total reduces to a low in
2005 as coal consumption reduces, before incre&siBg30 as wood consumption increases.
CO, and SQ emissions are negligible for biomass burning caegbdo fossil fuel burning
and reduce considerably over the period4d@d CO emissions are also dominated by fossil
fuel combustion and increase by just 27% and 428pewively from 2005 to 2030. GH
emissions are more strongly correlated with woorhing and increase from 3 kt y&ain
1990 to 7 kt year in 2030. NMVOCs are also highly dominated by waminbustion
throughout the period and total residential se@wonssions increase by a factor of 3.3
between 2005 and 2025. This is the largest increfia# pollutants. In 2015, heating stoves
accounted for 74.6% of NMVOC emissions from woodnbastion in the UK residential
sector. Organic carbon (OC) emissions followed milar trend, except for negligible
emissions from derived coal. Particulate emiss@msalso dominated by wood combustion
from the year 2001 onwards. Riemissions from wood combustion increase in byctofa

of 10 in heating stoves and 14 in fireplaces retbpalg from 1990 to 2030. Similar trends are
found in single house boilers and commercial bsilever the period. PM emissions
account for more than 96% of R§emissions, indicating that the majority of the ted
particles are in the fine fraction. Black carbonissions are shown in Figure 5k. BC
emissions from wood combustion in stoves incredsmu 0.27 kt yeaf in 1990 to 2.8 kt
year! in 2030. Emissions from coal reduced over theggeaind fell below those of wood in
the year 2004.

Emissions in New Zealand also follow the same tramndhe activity data, shown in Figure
4d. Coal consumption peaks at 3.4 PJ in 2015, egathesponding emissions peaks of 331 kt
year! for CO, and 2.2 kt yeaf for SO, Although consumption of lignite remains low over
the modelling period, the fuel contributes sigrafily to SQ emissions, peaking at 0.65 kt
year’ in 1995; 82% of total emissions from stoves amdpfaces. Emissions of GHind
NMVOCs are more dominated by wood combustion amilige by a factor of 3 between
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1990 and 2030. Emissions of CO, NEhd NO are relatively evenly split between fossil
fuels and biomass and stay largely consistent &t $@ar', 0.5 kt year and 0.025 kt yedr
respectively. Emissions of PMand OC emissions reduce linearly at rates of @af* and
23 t year' respectively. The increased coal consumption hageater impact on BC
emissions, becoming the leading source of BC betw&H4 and 2027. Despite this, BC
emissions reduce by 42% over the modelling periddsummary of the activity and
emissions data for heating stoves and fireplacéiseryear 2015 is given in Table 5 for both
New Zealand and the UK. Total emissions of bladkbea in stoves and fireplaces in 2015
were 3.26 kt in the UK and 0.60 kt in New Zealafhis equates to 0.117 kg dwellihgnd
0.337 kg dwelling respectively.
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Figure 5. Emissions of selected climate-relevanpscies (kt year') from heating stoves and
fireplaces in the UK, 1990 to 2030. (a) CQ(b) CH4; (c) NOy; (d) CO; (e) NMVOC; (f) SO; (9)

NH3; (h) NO; (i) PM g () PM 25 (k) BC; (1) OC.
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Figure 6. Emissions of selected climate-relevant spies (kt year') from heating stoves and
fireplaces in New Zealand, 1990 to 2030. (a) GQb) CHy; (c) NO,; (d) CO; (e) NMVOC; (f)
SO;; (9) NHs; (h) N2O; (i) PMyg; (j) PM 25 (k) BC; (1) OC.
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UK, 2015 NZ, 2015
Biomass Fossil fuel Biomass Fossil fuel
Parameter Unit | Fireplace Stovg Fireplace Sto Fireplace Stpve epkice Stove
Activity
data PJ 2.52 22.71L 15.01 0.35 3.03 3{50
CcO, kt year' 1416 331
CH, kt year* 0.88 4.54 0.27 0.09 0.37 0.0J7
NOy kt year* 0.17 1.55 1.78 0.02 0.21 0.411
CO kt year* 10.10 90.86 75.04 1.39 12.11 1762
NMVOC kt year* 4.29 36.34 2.73 0.42 2.8 0.45
SO, kt year* 0.011 0.10 9.23 0.001 0.013 2.32
NH; kt year* 0.02 0.19 0.12 0.003 0.025 0.43
N2O kt year' 0.010 0.09 0.02 0.001 0.012 0.0p5
PMyq kt year* 1.82 14.89 1.55 0.21 14 1.31
PM,s kt year* 1.76 14.42 1.53 0.20 1.3 1.7
BC kt year' 0.22 2.27 0.77 0.02 0.2 0.37
ocC kt yeart 0.81 6.35 0.49 0.09 0.6 0.4f7

Table 5. GAINS pollutant emissions inventory for R&E combustion in stoves and fireplaces in
the United Kingdom and New Zealand, 2015.

The climate impacts of the emissions profiles giverFigure 5 and Figure 6 were then
calculated for the years 2010 and 2030 and thédtsese presented in Figure 7.

mCO, m®=mCH, =N;O CO ®NOy ®NMVOC =mSO, mBC =OC m=mTotal
(a) UK, 2010 (b)NZ, 2010
Biomass | |- .
= m
Total
-200 -1'00 ('J 1('JO 2(')0 3(')0 400 -30 -2IO -1I0 (I) 1‘0 2‘0 3‘0 4I0 50
(c) UK, 2030 (d)NZ, 2030
Biomass | T I
= -
Total
-200 160 0 1(I)0 2(I]O 3(I)O 400 -30 -2IO -1I0 0 10 20 3IO 40 50

Radiative forcing (uW m2)

Figure 7. Breakdown of radiative forcing due to bianass and fossil fuel RSF combustion in
heating stoves and fireplaces in: (a) UK in 2010p§ NZ in 2010; (c) UK in 2030; (d) NZ in 2030.
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The results show that carbon dioxide from fossél ftombustion was the largest contributor
to radiative forcing in the UK residential sector 2010. The contribution from biomass
burning was approximately half that of fossil fusjth black carbon being the most
important warming species. $@om coal and derived coal combustion offset sahthe
warming by -110 uW A, giving a net positive radiative forcing of 218 p# for the UK in
2010. In contrast, by 2030 biomass has a largemwmgrimpact than fossil fuel combustion.
Black carbon from wood burning in stoves and fiaggls causes a radiative forcing of 97 pyW
m?in 2010. Despite some offset by organic carbon,toted net radiative forcing increases
by 23% to 268 uW M In New Zealand, net radiative forcing reduce2tb$s between 2010
and 2030. Forcing due to biomass burning in st@rek fireplaces is a factor of 4.3 lower
than that of fossil fuel burning in 2010. By 203tet forcing due to coal burning has
increased by 40% relative to 2010, and is just &3#&er than that of biomass burning. Black
carbon remains the most important forcing agerdath scenario years, accounting for 77%
of the total warming effect of combined biomass &ssil fuel burning in 2010; and 76% in
2030. However, in the intervening years, forcinge da coal combustion exceeds that of
biomass combustion by a factor of 2.4, due to gesum coal consumption. This results in a
slight increase in total net forcing (shown in red2015, but an overall reducing trend across
the modelling period. In the UK, total net forcireguces rapidly from 1990 to 2005 but then
increases at an average rate of 3.6 p¥A\dioe to increased wood burning.
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Figure 8. Total climate forcing due to wood and cdacombustion in heating stoves and fireplaces
in the UK (a) and New Zealand (b).

As discussed in section 3.2, the net AGWP fact@sduto create figure 10 are central
estimates and carry a substantial uncertainty.rib@es have not been included here because
the uncertainties in global radiative forcing daeanthropogenic pollution are substantial and
beyond the scope of this study (Bond et al., 2013)ere are also errors associated with the
activity data (up to factor of 3 for the UK accardito recent survey results) and with the
emissions factors used. For BC andgMmissions factors for wood burning stoves vary by
+30% between inventories (see table 6). The condbimecertainties are substantial and
hence values reported here should be treatediasatss.

4.3 A Bottom-Up Emissions Inventory Calculation andComparison

A bottom-up approach was used in order to createstoms inventories for both countries,
which can be compared with established inventotieshe UK, activity data for wood was
derived from the DECC Wood Consumption Survey (DEQG16a). It found that the
proportion of homes using wood for heating varegionally. The proportion was lowest in
London and the North East at 3.9% and 4.0% resmdgtiand highest in Northern Ireland
and the South East at 18.4% and 15.8% respectiVélg. survey also asked wood users
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whether they used any additional fuels as well a®dwv It found that the proportion of
households using coal as well as wood was belova@¥ss much of the UK. The exception
was in Northern Ireland where 10.1% of wood fuedrasalso used coal, which reflects the
high consumption of mixed RSF in the region. Coseby, despite 15.8% of respondents in
the South East using wood, just 1.7% of those @dsadl coal; indicating that wood dominates
the RSF mix. Activity data for coal and derived lceas derived from the DECC Sub-
National Residual Fuel Consumption Statistics (DEQQ15b). The results are shown in
Figure 9. It was found that coal consumption waghést in the East Midlands at 2.62 PJ and
lowest in London at 0.22 PJ. Consumption of marufad solid fuel (derived coal,
smokeless fuel, briquettes etc) was also higheghénEast Midlands at 1.98 PJ, closely
followed by Yorkshire and the Humber at 1.93 PJnglonption in London was 0.25 PJ.

¥
v,

(b) (c)

[ <10 L=l

I:H)- - ' 0.25-0.5
ST Elos-1.0

B is-20

e Bl io-15

-275-3‘0 . s-20

Figure 9. UK activity data (PJ) for (a) wood; (b) @al and (c) manufactured solid fuel.

In New Zealand, activity data for both wood andlamas derived from the 2013 National
Census (StatisticsNZ, 2015) using the methodoldgthe HAPINZ study (Kuschel et al.,

2012). As shown in Figure 10, the census data shiosighe proportion of households using
wood is far higher in New Zealand than in the UK:e©90% of homes in many rural wards
such as Taihape, Opuha and Glenmark use wood fdinige Coal consumption is much
more dependent on location. The proportion of homseg coal for heating is below 5%
across much of the country, particularly North nslaThe proportion is highest in wards
located in the west and south of South Islanduchclg Northern Ward, Grey District (76%),

Inangahua (69%) and Mataura (65%).
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Figure 10. Proportion of households in New Zealandsing a) wood; and b) coal; in 2013. Data
Source: (StatisticsNZ, 2015)

In order to produce an inventory, an in-depth mnavief RSF sector emissions factor
inventories was carried out. Emissions factorspglto heating stoves and fireplaces were
compared between the following inventories: the ENHEA air pollutant emission
inventory guidebook (EEA, 2013), U.S EnvironmerRabtection Agency AP-42 (USEPA,
1995), GAINS (http://gains.iiasa.ac.at/models/g tRCC emissions factor database (EFDP)
(www.ipcc-nggip.iges.or.jp/EFDB/), and the UK Nata Air Emissions Inventory (NAEI)
(http://naei.defra.gov.uk/). The results are shawitable 6 for wood and coal. Inventories
such as GAINS, the IPCC EFDP and NAEI offer emissitactors for other residential solid
fuels such as charcoal, peat, anthracite, cokdigmite.

As the table shows, not all pollutants are accalifde in all inventories. The most extensive
is the NAEI database, but these factors apply ¢oréisidential sector in general and are not
technology specific. The most comprehensive fueld géechnology-specific factors were
found to be those of the EMEP/EEA database ancethese selected as the basis for the
modelling work. EMEP/EEA emissions factors are ddygconsistent with other inventories.
However, the Pl¥h emissions factor for wood burning in stoves in BMEEA is 16% higher
than in GAINS and 66% higher than in NAEI. Despitis, BC emissions are 26% lower than
in GAINS for wood stoves and a factor of 4.5 lowkan in GAINS for coal stoves. Also in
comparison with GAINS, Table 6 shows that EMEP/EmBAy over-estimate emissions of
cadmium, zinc and indeno[1,2,3-cd]pyrene from whbaoadning, as well as copper and total
PAHs from coal burning. There may be an undereséinod emissions of arsenic, nickel,
selenium and PCBs. In comparison to stoves, enmsgaxtors for fireplaces are very similar
for wood combustion in the EMEP/EEA inventory. Haee for coal burning NQ SQ,
PMjo, cadmium, mercury, PAH and PCDD/F are lower foredlaces than stoves.
Furthermore GAINS does not provide emissions factmr coal burning in fireplaces,
whereas EMEP/EEA does. It should be noted, howekat,the EMEP/EEA factors apply to
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‘solid fuels other than biomass’ and are not spetif a certain fuel type such as bituminous
coal.

Factors for CQ CH;, N,O, OC and total PAH were not included in the EMHEERE
inventory. The value for COwas taken from the IPCC EFDP inventory. Methanesgions
factors were taken from GAINS for wood burning dhd NAEI for coal burning. pO and
derived coal / MSF emissions factors were alsortalkem NAEI. Finally, BC and OC
emissions factors were calculated from EMEP/EEA;PMmissions factors, applying the
ratio of BC or OC to PMs as given in the GAINS database. Values3¥B/AH were taken
from Lee et al. (2005).

[table 6 here]

Table 6. Summary of emissions factors applying toesidential solid fuel combustion in stoves
and fireplaces in five inventories, and those chosédor this study.

Combining the activity data in Figure 9 and Figdfewith the emissions factors in Table 6
yields the emission inventories for both countri€ge results are presented for the UK in
Figure 11 and for New Zealand in Figure 12. Thalsofor both countries are presented in
Table 7.
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Figure 11.

Distribution of emissions from stoves ahfireplaces in the UK in 2014.
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Figure 12. Distribution of emissions from stoves ahfireplaces in New Zealand in 2013.
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UK, 2013/14 NZ, 2013
Wood Coal MSF Wood Coal
Stoves + Stoves & | Stoves &
Parameter Unit Fireplaces  Stoves Fireplaces Stové&sreplaces| Fireplaces| Fireplaces
Activity data | PJ 32.80 29.51 10.79 9.71 10.99 26.7p 4.34
CcO, kt year 1021 918 269 415
CH, kt year* 11.5 5.9 5.1 4.6 1.6 5.3 0.1
NO, kt year* 1.6 1.5 0.6 1.0 1.2 1.3 0.4
co kt year 131.2 118.0 53.9 48.5 38.6 106.4 21.9
NMVOC kt year* 19.7 17.7 6.5 5.8 1.6 16.0 2.6
SO, kt year* 0.4 0.3 5.4 8.7 12.0 0.3 3.9
NH3 kt year* 2.4 2.1 0.05 0.05 0.3 1.9 0.02
N,O kt year* 0.10 0.09 0.04 0.04 0.03 0.08 0.02
PMyg kt year* 27.6 22.4 3.6 4.4 0.6 20.2 2.0
PM, kt year* 26.9 21.8 3.6 4.4 0.6 19.7 2.0
BC kt year* 3.3 3.4 1.0 1.3 0.05 3.1 0.6
oC kt year* 12.3 9.6 1.3 1.6 0.2 8.7 0.7
Lead t year 0.89 0.80 1.08 0.97 0.84 0.72 0.44
Cadmium t yeat 0.43 0.38 0.01 0.01 0.02 0.35 0.004
Mercury t year 0.02 0.02 0.03 0.05 0.05 0.01 0.02
Arsenic t yeat 0.01 0.01 0.02 0.01 0.18 0.01 0.01
Chromium t yeat 0.75 0.68 0.11 0.10 0.42 0.61 0.04
Copper t yeat 0.20 0.18 0.22 0.19 0.12 0.16 0.09
Nickel t year* 0.07 0.06 0.11 0.10 13.88 0.05 0.04
Selenium t yeat 0.02 0.01 0.01 0.02 0.21 0.01 0.01
Zinc t year' 16.79 15.11 2.16 1.94 0.98 13.62 0.88
Bla]P t year 3.97 3.57 1.08 2.43 0.09 3.22 1.10
B[b]F t year* 3.64 3.28 1.83 3.88 0.004 2.95 1.76
BIKIF t year* 1.38 1.24 1.08 1.46 0.001 1.12 0.66
I[123-cd]P t year 2.33 2.09 0.86 1.16 0.07 1.89 0.53
YPAHs t year 78.4 70.5 81.7 735 10.4 63.5 33.2
PCB g yeaf 2.0 1.8 1834 1650 1199 1.6 746.1
gI-TEQ
Dioxins year 26.2 23.6 5.4 9.7 8.1 21.3 4.4
HCB g year' 164.0 147.5 6.7 6.0 133.0 2.7
716 B[a]P: Benzo[a]pyrene; B[b]F: Benzol[b]fluoranthene; B{Benzo[K]fluoranthene; 1[123-cd]P: Indeno[123-cgne
717 Table 7. Pollutant emissions inventory for RSF comistion in the United Kingdom and New
718 Zealand, 2013/14.
719
720 In the UK, the results show that emissions are liiglhependent on regional fuel
721 consumption. Emissions of G@nd SQ are highest in regions with the highest fossill fue
722 combustion, including the North of England and VEal&ll other emissions are highest in
723 Northern Ireland and the South East, where woodl daasumption in highest. Emissions
724 remain consistently low in the North East, wherastomption of RSF is low across all fuel
725 types. The national totals for activity data andssmons in Table 7 may be compared with
726 the GAINS estimates in Table 5. It can be seenwwtd consumption in stoves is within
727 30% of the GAINS inventory estimate. However, wamshsumption in fireplaces is higher
728 by more than 30 PJ compared to GAINS. Combinedilféssl consumption is 31.49 PJ,
729 more than twice the GAINS estimate. The highervéagtidata also corresponds to higher
730 emissions. For biomass, the majority of emissiores lagher by a factor of 2-3. The
731 exceptions are NfHand SQ which are significantly higher than in GAINS, aNi#MVOCs
732 which are within 8% of the GAINS estimate. For fb$sel, there is a greater differences
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between the two inventories. The majority of enussiestimates are higher by a factor of 2-
6 than in GAINS. The exceptions are C&hd OC emissions which are significantly higher.
This is because the Glémissions factor for coal stoves in the NAEI i$§ 47GJ" versus 30

g GJin GAINS.

In New Zealand, regional fuel consumption also adarge impact on emissions. £énd
SO, emissions are far higher in South Island than antiNIsland, particularly in Greymouth,
Grey District. Emissions from wood burning are maneiformly distributed across the
country, and are strongly correlated to the largepulation areas. Emissions of ¢H
NMVOCs, CO, particulate matter, BC and OC are csimstly high in wards such as
Rotorua, Nelson and Waitakere ward which includes Auckland suburban areas of
Waitakere and Henderson. Emissions are also highds¢ wards which include Invercargill
and Dunedin, where BC emissions over 100 tonnes‘ybave been calculated. This
corresponds to annual BC emissions of 5.6 kg dmglliand 3.8 kg dwelling in the two
wards respectively. Comparing activity data, treules show that fossil fuel consumption in
the GAINS model is within 24% of the calculated somption. However calculated national
wood consumption is higher than the GAINS estimayea factor of 7.9. This has a
significant impact of total national emissions. €&@ddted emissions from fossil fuel
combustion are in the most part higher by a fadbrl-2 than in GAINS, except for
NMVOCs and NO which are higher by a factor of 5.8 and 4.0 respely. Calculated
emissions from biomass burning range from 4.8 tilnigher for NMVOCs to 67.9% higher
for ammonia. Importantly, black carbon emissiong d3.5 times higher, which has
significant implications for climate.

5. Discussion and Implications for the UK

Analysis of HAPINZ data (Kuschel et al., 2012) fduthat the contribution of domestic
heating to wintertime PM concentrations was highest in Alexandra, Arrowtamad Milton

at 45-50 pg nf; up to 2.5 times higher than the WHO recommendedua mean.
Calculated average winter BC concentrations wese highest in these areas, peaking at 10
1g ni°. The nationwide average was 1.8 pg amd typically 4-7 pg min urban/suburban
areasvhich is typical of the winter concentrations rapdrby the studies shown in Table 4.
These concentrations are comparable with thoseghiyhpolluted regions of India and Asia,
which have resulted in localised radiative forcioger urban areas of up to 23 Wm
(Panicker et al., 2010, Peng et al., 2016). lthereéfore recommended that a full radiative
transfer modelling exercise be carried out oveanrbreas in New Zealand in order to fully
understand the climate impacts of wood burningesov

Emissions of NVMOCs, BC, OC and particulate matieg highly dominated by heating
stoves because of the lower efficiency of combustithis is in agreement with Denier van
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der Gon et al. (2015) who found the residential dv@ombustion is the largest source of
organic aerosols in Europe. Lower combustion teatpees and larger fuel particle size
promote pyrolysis conditions which are conducivéigher emissions of organics (Williams
et al., 2012, Jones et al., 2014). The NVMOC emissiactor for coal combustion in heating
stoves (300 g GY is more than a factor of 5 lower than for woo®QQ g GJ) in the
GAINS database. In contrast, the factor is the sgg0@ g GJ) for both wood and coal
combustion in the EMEP/EEA database, and very amiil the NAEI database. Specific
NOy emissions factors by technology were not availablBAINS but the factor for biomass
in the general residential sector is almost hadit tbf coal, as shown in Table 3. NO
emissions are influenced by the nitrogen contertheffuel (Mitchell et al., 2016) and the
temperature of combustion (Jones et al., 2014). Sdme is true of SOemissions. Fuel-
bound sulphur is typically very low in wood and miass fuels, but can be as high as 2% in
manufactured solid fuel (Van Loo and Koppejan, 9d00fowever, the use of binders or
additives such as calcium carbonate during theymtomh of MSF briquettes can help retain a
proportion of the sulphur in the ash. Figure 6bwh that lignite contributes to SO
emissions, particularly between 1995 and 2000. GAENS emissions factor for lignite in
heating stoves is 558 t PJersus 616 t PJfor hard coal, which is consistent with the
relative sulphur contents reported by Beamish .ef28l01). New Zealand has several billion
tonnes of lignite resources in the Southland araj@tegions which may contribute to RSF
emissions in the future.

Emissions of PNb and PM s increase substantially from 2005 to 2030 in the iKgely due

to the increase in wood burning. The BMmissions factor for wood burning in heating
stoves is 44% higher than that of coal burninghe GAINS database. This is corroborated
by the EMEP/EEA and NAEI databases which find;pP®missions from wood burning are
64% and 63% higher respectively than coal, on argnbasis. However, PMemissions
are higher for coal on a mass basis. For exammpeNAEI reports emissions factors of 9.3 g
kg and 8.2 g kg for coal and wood respectively. This is in goodeagnent with Coulson et
al. (2015) who found emissions factors from in-sitwod stoves exhibit a log-normal
distribution with a mean of 9.8 g Kg(+ 2.4 g kg%). The 95% confidence interval for RM
emissions from conventional heating stoves burmiiogd and similar wood waste in the
EMEP/EEA database is 6.8-27.3 gk80-1520 g GJ) with a mean of 13.7 g Ky The
range of the 95% confidence interval is lower fosdil fuel at 7.5-15.8 g Kg The HAPINZ
study used factors of 8 g kdor wood and 25 g K§for coal (Kuschel et al., 2012). The most
important component of particulate matter for cliemahange is black carbon and this is
presented at a percentage in the EMEP/EEA datalbhee95% confidence interval is 2-20%
for wood (average 10%) and 2-26% for coal (ave&ige. In comparison, fractions reported
in GAINS are 16% for wood and 29% for coal. Anadysi several studies by Winther and
Nielsen (2011) found the BC fraction to vary fro®24 in wood fireplaces to 15% in wood
stoves and 35% in wood boilers. The fraction washrigher for coal at 45%.

The results show that the net impact on climatbesting stoves and fireplaces in both the
UK and New Zealand is strongly warming, and blacebon is the most important
component of radiative forcing, particularly wheasumption of wood exceeds that of coal.
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A comparison of the BC emissions reported hereasanwith several international climate
models, and is shown in Figure 13. The figure alsows projected emissions under different
scenarios from RSF combustion until the year 210 suffix _calc denotes that BC has
been calculated from Pjfldata. In the UK, most scenarios predict a gradeduiction in BC
emissions over the period. However, the GAINS adWENdata show that after 2004 there
has been a significant increase in BC emissionschwivill continue until 2025. In New
Zealand, all model scenarios suggest a large rieduict BC emissions from 2010 onwards.
The BC emissions estimate of this study is apprexgty 40% higher than the highest
estimate made by the PEGASOS model, but signifigdngher than all other models. The
BC emissions factors used here are similar togh#te GAINS database so it is most likely
the activity data which carries the largest uncetya
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Figure 13. Comparison of model predictions of BC emsions from the residential sector in (a)
the UK; and (b) New Zealand; for the years 1990 —1D0.
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Figure 13a also shows that the calculated UK BCssimins are approximately three times
higher than most climate models predict. This iagneement with the findings of the recent
DECC Domestic Wood Use Survey, which found that E3has previously underestimated
wood consumption by a factor of three (DECC, 201B&hier van der Gon et al. (2015) also
found that previous inventories in Europe undemestéd emissions from wood RSF by a
factor of 2-3. If BC emissions were to increasdh&t same rate as BN as given in the
NAEI inventory between 2005 and 2013, then emissivauld be over 6.7 kt yeaby 2030;

an increase of 84% on 2013 emissions. In contexis®ons from passenger cars (UNFCCC
section 1.A.3.b.i) were 1.7 kt in 2015, reducingQd kt in 2030 according to GAINS
(ECLIPSE version 5, CLE scenario). The GAINS maquteldicts a reduction in BC emissions
across most UNFCCC sectors, but an increase iregidential sector (section 1.A.4.b.i). In
fact, by 2030 the residential sector accounts #%6 4f total BC emissions and 40% of total
OC emissions across all sectors in the UK. Thiomparable to Denmark, where residential
wood combustion is prevalent (Winther and Niels#11). The high contribution of RSF to
BC and OC is largely due to increased use of woddeating stoves as shown in Figure 4.
The contribution of other technologies in the restihl sector to BC, OC and total RPpis
comparatively low, as shown in Figure 14a. In 202&ating stoves and fireplaces account
for 77% of BC emissions, 90% of OC emissions, abth &f total residential sector BM
emissions. This is a result of lower combustioicedficies, lower MCE and higher emissions
factors for small scale biomass technologies. H@wnelarger technologies such as single
house biomass boilers (< 50 kW) and commercial bgsrboilers (<50 MW) make a larger
contribution to NQ emissions due to higher combustion temperatureks farmation of
thermal NQ (Williams et al., 2012). As shown in Figure 14lealing stoves and fireplaces
account for just 42% of NGemissions in 2025.
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Figure 14. Breakdown of UK residential sector emisens from wood combustion by technology
for (a) PM,sand (b) NQ,, according to the GAINS model, 1990-2030.

As discussed in section 2.2, there is good comayatetween residential heating sectors in
New Zealand and the UK in terms of fuel poverty anérgy efficiency of homes. However,
space heating accounts for a greater proporticeflential energy consumption in the UK
than New Zealand. Both average wood consumptionhoeisehold, and average wood
consumption per day are twice as high in New Zehksin the UK. This may be linked to
the limited availability or higher cost of alternat heating fuels, particularly as New Zealand
has a large domestic supply of wood, whereas thedd&s not and may rely on wood
imports in the future. In addition, the climatestbé two countries are comparable, but
distinct. The latitude of New Zealand ranges frofi ® 47° South, whereas mainland UK
covers 50° to 58° North. Being closer to the equdhe far north of New Zealand has a sub-
tropical climate and typical winter daytime maximwim temperatures are 12-17°C. The
South Island is generally cooler and more mountasnavith maximum winter daytime

temperatures of 5-12°C. Average winter daily maxin temperatures in the UK are similar
but generally lower, ranging from 5-7°C in north&cotland to 7-10°C in southern England.
Both countries also commonly experience smog epsatliring winter anticyclones and

atmospheric temperature inversions (Kossmann aodn@n, 2004, Milionis and Davies,
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2008). Such events are typically correlated wittvdp temperatures and higher emissions

from home heating.

The UK also has 60 million more inhabitants andrition more homes than New Zealand,
and currently 7.5% of UK households burn wood camgdo >50% of NZ households (see
section 2.1). Due to the higher density of houssrgall increases in emissions may have a
greater impact in the UK. For example, a 1% inadasthe number of UK homes burning
wood would lead to over 30,000 extra tonnes of w@dny basis) being burned per year,

assuming the factors given in table 1.

6. Policy Implications

A high degree of uncertainty remains in RSF agtivilata estimates, due to inherent
difficulties in monitoring this highly variable essions source. Bottom-up inventories using
the latest census, survey and sales data holdbtkeatfal to reduce uncertainty.

Implications for air quality and health

Biomass burning stoves and boilers have the pateatisignificantly reduce greenhouse gas
(mainly CQ) emissions from the residential sector, but camstrbe taken to ensure that this
is not done at the detriment of air quality, pastaely in the winter time. The UK is facing a
number of legal challenges over European air quditaches. Hence an increase in
residential wood burning could impede efforts taluee national emissions of NO
NMVOCs, NH;, PM, 5 and CH through planned revisions to the National Emis€@iings
(NEC) Directive 2001/81/EC. The improvement of emas inventories for residential
wood burning was identified as one of the key afeasmprovement in receptor modelling
studies and substantially more information” is needed in this areabé&fore abatement
policies can be formulated” (AQEG, 2012).

Although a range of low-emission appliances arelabi@ through the RHI, uptake remains
low, particularly where there is an option to itistacheaper more traditional wood burning
stove. The Ecodesign Regulations in Europe havepthential to increase uptake of such
appliances and significantly reduce emissions m fiiture. The regulations also help to
minimise variation between standard test methodssadEurope, but significant differences
remain internationally such as in standard fuel$ sampling methods. Before Ecodesign is
implemented, voluntary eco-labelling of new appties such as Flamme Verte (France),
Nordic Swan (Scandinavia) and Burnwise (NSPS, UB@A)y help to reduce emissions. If
emissions from older appliances are to be reduadibut replacement, then policies may
target fuel switching to pellets/briquettes or prated fuels (torrefied biomass or washed
wood), as well as ‘No Burn Days’ and retrofittinfadatement technologies.
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909 Implications for climate change
910 As described in section 2.1, the UK must achievgeta of 12% renewable heat by 2020,
911 15% total renewables by 2020, and 80% emissiongctexhs by 2050. In order to achieve
912 this, the Committee on Climate Change (CCC) hagldeed a series of quadrennial ‘carbon
913 budgets’ with specific targets enshrined into |ae fifth carbon budget (2015-2035) sets a
914 target of installing 400,000 extra biomass boilkns space heating (not including district
915 heating), equating to 36 PJ and GHG savings of MtBO,-equivalent. Current policy
916 incentivising residential biomass uptake explictygets biomass boilers (CCC targets and
917 RHI policy) and there is little or no support faoges. This is because heat generated must be
918 metered in order to be eligible for RHI paymentscainciding benefit is that boilers tend to
919 have lower emissions factors than stoves and must lRHI emissions and efficiency
920 criteria. Consumption of wood pellets is also measily audited than wood logs, where there
921 is a large ‘grey’ or informal market consisting eélf-sourced fuel and waste wood
922 (Bitterman and Suvorov, 2012). However, the DECGnigstic Wood Consumption Survey
923 and subsequent revisions to DUKES highlight the drtgnce of small scale unmetered
924 residential wood combustion (RWC) in the renewanlergy mix, as shown in table 8.
DUKES 2014 | DUKES 2016| DUKES 2016
(year 2013) | (year 2013) | (year 2015)

Renewable 35% 63% 54%

heat

Total 5.4% 14.2% 10.7%

renewable

energy
925
926 Table 8. Revised contributions of domestic wood cdmustion to renewable heat and total
927 renewable energy generation in the UK. Data sourceDUKES 2016 Chapter 6, table 6.6,
928 (DECC, 2016a).
929 The revisions mean that the UK moves from leveR8VC <10% renewables) to level 2
930 (RWC 10-30% renewables), according to European@@@reporting standards (Bitterman
931 and Suvorov, 2012). As a result it is recommentied the UK conduct a RWC survey every
932 3-4 years instead of 5-10 years and errors ingperting should be £10% rather than +30%.
933
934 7. Conclusions
935 Here we present one of the first detailed inveetdf black carbon concentrations from RSF
936 combustion in New Zealand. Concentrations were érighan 10 pg i in some suburban
937 areas of Christchurch, Dunedin, and Nelson. In @mspn, BC concentrations due to wood
938 burning in London are estimated to be 0.17-0.33nfgsee section 2.1). This has significant
939 implications for air quality and climate and senassan example of the BC concentrations
940 that can be expected in similar sized UK towns aitigs, should RSF use in stoves and
941 fireplaces continue to increase without emissiomstrols. As is the case in New Zealand,
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residential wood combustion (RWC) may become tihgelst source of ambient wintertime
PMj and BC in the UK. Model predictions show a 14-foidrease in the consumption of
wood in the UK residential sector between 1990 2080 and heating stoves alone account
for 40-55% of this. As a result, emissions of £ZNMVOCs, PM,, PM,s and OC increase
significantly and total net radiative forcing inases by 23% between 2010 and 2030. Due to
the reduction in coal use and the increase in wsad black carbon surpasses carbon dioxide
to become the most important component of RSF tigdidorcing, with wood burning BC
alone accounting for over 50% of the total positiadiative forcing in 2030.

A unique bottom-up emissions inventory was produfmgdboth countries using the latest
census data for New Zealand and survey data fotJ#ieOne recommendation from New
Zealand is that conducting a survey of fuels usgchbme heating every 3-5 years helps to
reduce uncertainty in activity data which is impoittfor renewable energy targets, emissions
inventories and air quality and climate models.iAtt data was multiplied by emissions
factors derived from a critical analysis of 5 int@res, which highlighted the uncertainty in
emissions factors in this subcategory. In ordeetluce uncertainty in emissions factors, it is
recommended that standard test methods be modifiegplicate real-world emissions, and
in-situ testing be carried out as has been donRew Zealand. More than ten years of
research has been conducted on RSF emissions sodaisd air quality impacts in New
Zealand, whereas UK research has largely focusseather sectors. The relative success of
imposing additional emissions limits on wood busieas also been demonstrated, such as in
Nelson where P and BC are reducing (see section 2.3). In ternB®fOC and climate, a
deeper understanding of the impact of ‘brown’ fi@ctof organic carbon is required, as well

as the impact of high SOA formation from aged weoptbke.
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EMEP USEPA GAINS IPCC NAEI This study
Heating Heating

Heating stoves Fireplaces stove Fireplace Heating Stoveg Fireplages stove Fireplace Residential Residential Heatingesto Fireplaces Residentig
Pollutant Unit Wood  Coal| Wood  Coaj Wood Wood Wood oaC Wood Wood Wood Wood Coal Wood Codl Wood Copl odo Coal MSF
Carbon Dioxide g G 94444 94300 112000 94600 21789 94600 94600 24459
Methane gG3 833 200 30 350 932 300 267-264 205 416 200 476 350 476 149
Nitrogen oxides g G 50 100 50 60 78 72 80 120 110 100 b 49 108 50 100 50 60 113
Carbon Monoxide g GY 4000 5000 4000 500( 6411 7017 10040 1100 5000 000-3600 2956 4249 4000 500 4000 5000 3517
Non Methane VOC gGJ 600 600 600 600 6361 1600 30 1700 600 200 93 3 424 600 600 600 600 148
Sulphur Dioxide g G 11 900 11 500 11 11 726 6 78 11 9do 11 0 5p 1096
Nitrous Oxide gG) 8 14 9 4 15 3 4 3 4 3 4 3
Ammonia g [ex;] 70 5 74 5 8 55 30 70 5 74 5 30
PMyo gGJF 760 450 840 330 850 961 655 454 720 458 2B1 760 450 840 330 56
PM;e g G} 740 450 820 330 635 450 698 427 297 740 450 820 330 55
Black Smoke gGYy 56 1212 144
Black Carbon g G 74 29 57 32 100 130 86 117 13p 101 9b 5
Organic Carbon gQdy 1472 0.4 280 160 320 326 10 763 117 20
Lead mg GJ 27 100 27 100 51 86 27 10 27 100 76
Cadmium mg G 13.0 1.0 13.0 0.5 0.61 4.4 0.9 13.0 10 13.0 0.5 2
Mercury mg G} 0.6 5.0 0.6 3.0 1.7 3.3 0.6 5. 06 0 3| 5
Arsenic mg G3 0.2 1.5 0.2 1.5 1.7 14.3 0.2 1.4 02 51 16
Chromium mg GJ 23 10 23 10 0.03 50 27 23 10 23 1 38
Copper mg GJ 6 20 6 20 5.6 6.4 6 20 6 20 11
Nickel mg GJ 2 10 2 10 0.39 54 14 2 10 2 1Q 1263
Selenium mg G3 0.5 2.0 0.5 1.0 5 13 0.5 2.4 0.5 1.0 91
Zinc mg G 512 200 512 200 69 75 512 20p 512 200 89
Calcium mg G3 525 15856
Tin mg GF 7.5 4.2 417
Vanadium mg G3 1.7 3.3 3303
Magnesium mg GJ 89 5145
Sodium mg G3 583 5064
Beryllium mg GJ} 0.36 40 4
Potassium mg GJ 2472 4250
Manganese mg GJ 4.72
Benzo[a]pyrene mg GJ 121 250 121 100 111 72 47 121 250 121 0 1p 8.4
Benzo[b]fluoranthene mg a&J 111 400 111 170 167 83 2 111 400 111 10 04
Benzo[k]fluoranthene mg GJ 42 150 42 100 56 28 0.6 42 150 42 190 1 0.
Indeno[123-cd]pyrene mg GJ 71 120 71 80 5 36 71 124 71 8( 6.4
Benz[a]anthracene mg 6J 556 278 54
Anthracene mg GY 389 361 56
Benzene mg GY 54 14 19
Benzo[ghi]perylene mg GJ 111 56 25
Fluorene mg G 667 461 491
Dibenz[ah]anthracene mg &J 1 54
Acenapthylene mg GJ 5889 4367 217
Napthalene mg GJ 8000 5017 3738
Pyrene mg G 667 406 90
Phenanthrene mg &J 2167 1356 199
Acenapthene mg GJ 278 172 159
Fluoranthene mg GJ 556 383 90
Chrysene mg GY 333 211 51
Total PAH mg G} 2389 7574 2389 7516 950
Polychlorinated biphenylg ug &J 0.06 170 0.06 170 111 10 0.06 170 .060 170 109
Dioxins ng I-TEQ G3 800 1000 800 500 662 73 800 1000 800 500 742
Hexachlorobenzene ug B&J 5 0.62 5 0.62 4 1 5 0.61 5 0.6R
Hydrogen Chloride gGy 71




Highlights:

Residentia wood combustion (RWC) in the UK isforecast to increase by afactor of
14 up to 2030.

Small scale heating stoves and fireplaces are the most polluting RWC technology and
account for 85% of residential solid fuel (RSF) PM 5 emissions.

Wood consumption per person in New Zealand is currently twice that of the UK, with
significant air quality and climate impacts which may be replicated in the UK in the
future, if growth continues.

Black carbon has surpassed carbon dioxide to become the most important component
of RSF radiative forcing

Recent UK survey dataincreased the contribution of RWC to renewable energy
targets from 5.4% to 14.2% for 2013, so reducing uncertainty in activity data and
emissions inventoriesis crucial.
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AGWP
BC
CAU
DECC

DEFRA
DUKES
EC
EECA

EMEP/EEA

EPA
EPC
GAINS
HAPINZ
IPCC
LPG
MBIE
MC
MSF
NAEI
NES
NMVOC
NSPS
NZFFA
NZHHA
oC
OECD
OGC
PAH
PM
RHI
RSF
RwC
SIA
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recently become the Department for Business, Energy & Industrial Strategy
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Agency

Environmental Protection Agency (USA)

Energy Performance Certificate

Greenhouse gas — Air pollution Interactiond &ynergies
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Intergovernmental Panel on Climate Change

Liquefied petroleum gas
Ministry of Business, Innovation and EmployméNZ)
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Manufactured Solid Fuel
National Atmospheric Emissions Inventory (UK)
National Environmental Standard (NZ)

Non-Methane Volatile Organic Compounds
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Organic Carbon

Organization for Economic Cooperation and Dewaent
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Polycyclic Aromatic Hydrocarbons

Particulate Matter

Renewable Heat Incentive (UK)

Residential Solid Fuels
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Stove Industry Alliance
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Total Primary Energy Supply

United Nations Framework Convention on Cten@hange



